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Abstract
The ground-state properties of the spin-1 pyrochlore antiferromagnet are studied
by applying the VBS-like tetrahedron-unit decomposition to the original spin
system. The symmetrization required on every vertex is taken into account
by introducing a ferromagnetic coupling. The pairwise effective Hamiltonian
between the adjacent tetrahedrons is obtained by considering the next nearest
neighbour and the third neighbour exchange interactions. We find that the
transverse component of the spin chirality exhibits a long-range order, breaking
the parity symmetry of the tetrahedral group, while the chirality itself is not
broken.

The pyrochlore lattice, the network of the corner sharing tetrahedrons or a fcc-array of
tetrahedrons, is a typical example of a three-dimensional (3D) frustrated system which is
found in a number of materials, such as spinels, pyrochlores and C15-type Laves phase. To
study effects of the geometric frustrations and the resultant enhanced spin fluctuations, the
pyrochlore spin systems have been investigated intensively. For the spin-1/2 antiferromagnetic
(AF) Heisenberg model, the quantum spin-liquid ground state is proposed based on the series
expansion at finite temperature [1], but concerning the properties of the low-lying spin-singlet
states below the spin gap a consistent picture has not emerged yet [2–5].

For the spin-1 case, in order to obtain definitive results [4] for the spin-1/2 systems
powerful numerical methods and an analytical approach are used. We proposed the idea of the
tetrahedron-unit decomposition of the pyrochlore lattice, which is a natural generalization of
the valence-bond-solid(VBS) state approach developed for the 1D spin-1 systems [7]. In this
approach the ground states of the fundamental unit, corresponding to the valence bond for the
VBS case is the tetrahedron spin singlets which form the two-dimensionalE representation of
the tetrahedral group (Td ). In consequence, the constructed VBS-type wavefunctions define
the variational spin-singlets manifold with a macroscopic degeneracy, to which the ground
state of the original problem may be continued adiabatically. In this situation, it is essential to
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investigate how the ground state in the thermodynamic limit is stabilized from a collection of
spin singlets by lifting the degeneracy.

In a previous paper [7], we examined the magneto-elastic couplings between the
tetrahedron-singlets and the local lattice distortion of the E modes on the same tetrahedron as
the source of lifting the degeneracy. As a result we have found that a Jahn-Teller mechanism
driven by the non-magnetic spin degrees of freedom gives rise to the structural phase transition.
The local lattice distortion is given by the Qv mode of Td . Actually the uniform Qv

distortion compressed along the c-axis is consistent with the cubic-to-tetragonal structural
phase transition without any accompanying magnetic order observed in the spin-1 spinel-type
antiferromagnets, ZnV2O4 and MgV2O4. This scenario can explain, at least qualitatively, the
experimental results around the structural transition temperature.

In this letter we investigate another way of lifting the degeneracy when the inter-tetrahedron
interactions, such as the next nearest and/or third neighbour spin–spin interactions, are relevant.
In particular, we will discuss the properties of the order parameters of the obtained ground
state. Since the tetrahedron-singlets may be labelled by the spin chirality, a chiral ordered
state is an interesting possibility. However, as long as physically reasonable interactions, such
as spin exchange interaction or the dipole interaction are considered, we find that it is not the
chirality but its transverse component that shows the long-range order.
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Figure 1. The primitive cell of the pyrochlore lattice (a) and its projected view from the [111̄]-axis
(b). The small cubes in part (a) are a guide for the eye with one-sixteenth volume of the unit cell.

Following the 1D VBS approach, we break up the original spin-1 objects (denoted by �Si)
into two spin-1/2 ones (�sia and �sib) and introduce ferromagnetic Hund couplings between them
(−JF ), which serve as the symmetrization. To project out the singlet sector of the composite
spins completely it is necessary to take the JF → ∞ limit, however, in nature a strong but
finite JF is sufficient. The pyrochlore lattice may be decomposed into A and B type bonds,
which form the upward and downward tetrahedrons as shown in figure 1(b). Because of the
symmetrization we can consider that the 1/2-spins with a (b) index construct the network
of the A (B) bonds without loss of generality. In this decomposite-spin representation, the
original AF Heisenberg model can be rewritten in the strong ferromagnetic coupling limit
(JF → ∞) as follows

Hdec = 4J
∑

〈i,j〉∈A
�sia · �sja + 4J

∑

〈i,j〉∈B
�sib · �sjb − JF

∑

i

�sia · �sib. (1)
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In the JF = 0 limit, the ground states of equation (1) are given by;

|�0〉 =
N/2∏

k=1

(αk|u〉k + βk|v〉k) (2)

with arbitrary complex parameters αk and βk keeping |αk|2 + |βk|2 = 1, whereN is the number
of sites and k specifies a tetrahedron. Here the orthonormal basis, {|u〉, |v〉} defined for a single
tetrahedron are the total spin-singlet states with �s1x + �s2x = �s3x + �s4x = 0 or 1, respectively,
(x = a, b) (see figure 2). These tetrahedron singlets are the non-magnetic doublets belonging
to the E representation of Td and the 2N/2-fold degenerate manifold defined by equation
(2) is expected to be adiabatically continued to the low-energy sector of the original model.
When representing the symmetry operation of Td in this singlet subspace, {|u〉, |v〉} real-basis
diagonalizes the parity operations with respect to the bonds vertical to the c-axis. On the other
hand, the chirality basis [7], which is defined by |R〉 = (|u〉 − i|v〉)/√2 and |L〉 = |R〉∗,
diagonalizes the four distinct C3 operations with the eigenvalues of ω = (−1 +

√
3i)/2 and its

complex conjugate ω∗, respectively.
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Figure 2. The schematic representations of the tetrahedron-singlet states, |u〉 and |v〉.

We proceed to the next step of lifting the 2N/2-fold degeneracy of equation (2). When
considering the pure two-tetrahedron problem, we can easily see that the ferromagnetic
coupling JF alone does not lift the degeneracy. Therefore the pairwise perturbation between
the two adjacent tetrahedrons caused by JF never fixes the original 2 × 2-fold degeneracy.
From a geometry viewpoint, this means that the relative rotation of two tetrahedrons is not
fixed only by JF . The degeneracy is partly lifted by considering three tetrahedrons and
eventually the degeneracy will be lifted for the entire lattice. However energy scales of the
lifting of degeneracy are expected to be small and hierarchical [5]. This problem is interesting
but more academic since in nature there are other couplings to lift the degeneracy. In [7]
we have considered the local coupling with lattice distortion which leads to the structural
phase transition. As another source of lifting the degeneracy we can introduce longer-range
interactions which are relevant to lift the degeneracy for a pair of tetrahedrons.

In order to fix the relative rotation of the two adjacent tetrahedrons, we include the next
nearest neighbour (J1) and the third neighbour interactions (J2). In spinels, J2 is expected
to be important because of the existence of a superexchange-path through the oxygens on a
single plane. The arrangement of these interactions are shown in figure 3. By the second-
order perturbation in −JF , J1, and J2 within the degenerate subspace spanned by equation
(2), we obtain the pairwise effective Hamiltonian between the tetrahedron-singlet states on the
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adjacent tetrahedrons as follows

Heff = 1

2
(J2 − J1) (JF − 4J2)

∑

〈ka,kb〉

(
τ +
ka
τ−
kb

+ τ−
ka
τ +
kb

)
+ C1 (3)

where the coupling is the same for the four distinct directions of pairs. In equation (3),

C1 = −N

64

{
(JF − 4J2)

2 + 2 (JF − 4J1)
2 + 10 (4J2 − 4J1)

2
}

(4)

and the Pauli matrix �τk , describing the two-dimensional spin-singlet space on the kth
tetrahedron, is defined by using the chirality basis as,

τ z = |R〉〈R| − |L〉〈L|
τ + = |R〉〈L| τ− = |L〉〈R|.

In fact, we can show that the universality class of the effective Hamiltonian is XXZ
type by using a symmetry consideration as follows. First, the ±2π/3 rotation, C3 and C−1

3 ,
around the axis joining the centres of two tetrahedrons leads to the conservation of their total
chirality. Second, the |R〉 and |L〉 states are mutually conjugate by the time-reversal symmetry.
Therefore we can conclude that the derived effective interaction has the XXZ-type symmetry
of the pseudo �τ -spins and that the Ising term must vanish in the even-order perturbations. It
should be noted that the second-order perturbation gives the leading terms, since we start from
the non-magnetic zeroth order states.

In order to estimate the higher-order perturbation terms concerning JF within the pairwise
treatment, we consider the infinite JF limit by considering the original spin-1 object on the
sharing top vertex of the two tetrahedrons. In this case, the effective Hamiltonian obtained by
the first-order perturbation is given by,

hka,kb = 1

2.25
(J2 − J1)

(
τ +
ka
τ−
kb

+ τ−
ka
τ +
kb

)
+ C2 (5)

with C2 = (J2 + 2J1) /9, which is just 8/9 of the coefficient of the first order term of equation
(3) in JF . The �τ matrixes here are defined concerning the bottom triangles, which are related
to the �τ matrix in equation (3) through the relations like |R〉 = (|↑R〉| ↓V 〉 − |↓R〉| ↑V 〉) /√2,
where | ↑R〉 is the doublet state withR chirality about the bottom triangle and | ↑V 〉 represents
the spin state on the top vertex. It should be noted that such decompositions cannot be extended
consistently over the whole lattice. Here we have shown it to illustrate the generic form of the
pairwise effective interaction in the strong JF limit.

Comparison of equation (3) and equation (5) suggests that higher-order effects of JF only
renormalize the strength of the pairwise interaction. Therefore, we assume that the effective
Hamiltonian which describes the low-energy part of the original Heisenberg model with next
nearest neighbour (J1) and third neighbour interactions (J2) is given as follows, by using the
spin-1/2 pseudospin operator, �τk , defined for the kth tetrahedron

Heff = cJ ′ ∑

〈ka,kb〉

(
τ +
ka
τ−
kb

+ τ−
ka
τ +
kb

)
(6)

where J ′ = J2 −J1 with a positive c. Since both of the upward (labelled by ka) and downward
(kb)tetrahedrons form the distinct fcc lattice structure, (6) is the spin-1/2 XY model on ZnS
type bipartite lattice with coordination number z = 4.

Since the sign of the coupling constant of the XY model on a bipartite lattice can be
converted by the π -rotation around the z-axis concerning one of the two sublattices in the
following we discuss the case with the negative interaction. For the spin-1/2 case with N
sites, it is shown that the ground state is unique with Sztot = 0 by using the Perron-Frobenius
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Figure 3. The decomposite-spin representation of the Heisenberg model (J and infinite JF ) and
the next-nearest (J1) and third-neighboring interactions (J2) are shown for the pairwise (ka, kb)
tetrahedrons.

theorem [10]. As one can naively imagine, the state with Stot = N/2 and Sztot = 0 is a good
zeroth-order approximation. In fact, the Gutzwiller-type wavefunction constructed from this
state is shown to be an extremely good variational state [11, 12]. When applying their results
for our z = 4 case, the square of the long-range order (LRO) and the short-range magnetic
correlation are given by;

〈Mx2〉/N2 = 215 · 34 · 7−8 = 0.4604 · · · (7)

〈τ zk · τ zk+δ〉 = − 1/7 (8)

where �M = ∑N
k=1 �τk and �τk+δ means the nearest neighbour pseudospin next to the �τk

pseudospin. In the XY model, the Hamiltonian has the U(1) symmetry about the rotation
around the z axis in the spin space. Therefore the direction of the order parameter in the τ x-τ y

plane cannot be determined even for the infinite system. The U(1) symmetric general order
parameters, �M(θ), are defined by the ground-state expectation value of the following operator;

M̂ (θ) = (
Mx cos θ,My sin θ, 0

)
(9)

where 〈Mx〉 = 〈My〉 = M > 0. Concerning every local tetrahedron, M̂(θ) belongs to the E
representation of Td .

Although the effective Hamiltonian, equation (6), has the continuous U(1) symmetry as
represented by equation (9), the original model possesses only the finite group (Td ) symmetry.
The U(1) symmetry is fictitious, valid only in the lowest-order treatments with the pseudo-spin
representation. Suppose that we take account of the higher-order interactions like biquadratic
term and others, then this spurious U(1) symmetry should be broken. In order to understand
how this lowering of the symmetry acts, we make use of the Ginzburg–Landau type argument
by expanding the free energy as a function of the order parameter �M(θ), by its magnitude M
and phase θ around the second-order transition point. The U(1) symmetry, obtained by the
perturbation, corresponds to the second-order expansion of the free energy by �M(θ). This is
because, on every tetrahedron, the product representation E×E (= A1 +A2 +E) contains the
unique totally symmetric one (A1), which is a constant independent of θ . Now we proceed to
higher order corrections. Since under the time-reversal symmetry only τ z changes the sign,
while both τ x and τ y remain unchanged, the third-order expansion gives the next leading term,
introducing the anisotropy to fix θ . By calculating the third order invariant, which is obtained
by reducing the product representation E×E×E, we find that the anisotropy is proportional
to cos 3θ . Thus we get a set of the stable states, { �M(π), �M(±π/3)} or { �M(0), �M(±2π/3)},
depending on the sign of the M3 term. These two sets only differ in the overall sign and are
essentially the same.

Let us illustrate the symmetry property of the order parameter by taking �M(0) =∑N
k=1〈τ xk 〉 = ∑N

k=1〈|uk〉〈uk| − |vk〉〈vk|〉 as an example. The non-vanishing long-range
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correlation between τ xk and τ xk′ results in the different population of the |u〉 and |v〉 states
on a tetrahedron. Therefore the parity symmetry concerning the bonds vertical to the c-axis is
broken in the ground state, since the |u〉 and |v〉 states are characterized by the odd and even
parity concerning these bonds respectively. Three different values of θ in each set of order
parameters correspond to the three equivalent choices of the cubic principal axis; �M(2π/3) and
�M(−2π/3) characterizes the break-down of the parity symmetry concerning the bonds vertical

to the b and c axes, respectively. These three states form a domain structure in a real system.
Now we extend the present results for positive JF and also summarize the ground-state

properties of equation (6) by taking c-axis as a principal axis (θ = 0, π ). Depending on the
sign of J ′ = J2 − J1, the uniform (J ′ < 0) or the staggered signed (J ′ > 0) summation
of the 〈τ xk 〉 over all the tetrahedrons defines the order parameter. In the classical picture, for
negative J ′ the ground state shows the ferromagnetic LRO of the transverse components of
the spin chirality |u〉 (|v〉) when θ = 0 (π), while for positive J ′ the antiferromagnetic LRO
of the |u〉 and |v〉 states. For a local tetrahedron problem the compressed and elongated Qv

mode along the c-axis stabilize the |u〉 and |v〉 states, respectively [7]. Therefore, for the
ferromagnetic J ′ model the order parameter, �M(0) ( �M(π)), induces the uniform Qv lattice
distortion with c/a < 1 (> 1). On the other hand, for the AF J ′ the staggeredQv distortion is
induced. Accordingly, under the assumption that the inter-tetrahedron interactions are more
important than the local magneto-elastic couplings, the inter-tetrahedron couplings (J1 and J2)
lift the many-fold degeneracy of the spin-singlet manifold by the second-order phase transition.
However, introduction of the magneto-elastic coupling, even for a weak case, will induce a
small first order structural distortion, leading eventually to a weak first-order phase transition.

In conclusion, we have studied the ground-state properties of the spin-1 pyrochlore
antiferromagnet by using the tetrahedron-unit decomposition of the pyrochlore lattice. In this
approach, we assume that the spin-singlet manifold spanned by the VBS-type wavefunction
well describes the low-energy physics well and the essential point is how the degeneracy is
lifted. We have investigated the case where this degeneracy is lifted by the inter-tetrahedron
interactions caused by the next nearest neighbour and the third neighbour interaction, which
produce the pairwise effective Hamiltonian of the XY type between the pseudospin operators
describing the tetrahedron singlets. To break the spurious U(1) symmetry of the effective
model, we have considered the higher-order anisotropic term based on the symmetry property
(E) of the order parameter. It has turned out that the parity-broken ground state emerges
through the second-order phase transition.

Lastly we briefly comment on the relation between the present results and the numerical
results for the pure spin-1 Heisenberg model [4]. The singlet ground states of a single
spin-1 tetrahedron problem are three-dimensional with A1 + E irreducible representations.
When we define these spin-singlet states, with �S1 + �S2 = �S3 + �S4 = 0, 1, and 2, by
|a〉, |b〉, and |c〉, respectively, the orthonormal basis of the E representation are given by
{|U〉, |V 〉} = {|b〉, (−2|a〉+

√
5|c〉)/3}. Considering the fact that the symmetrization on every

vertex does not affect the local symmetry properties, the parity-broken symmetry of the ground
state, obtained by using the decomposite-spin representation, may correspond to the |U〉 and
|V 〉 states in the spin-1 picture. Since Koga et. al suggested the possibility of the new spin-gap
ground state characterized by the |U〉 state around the isotropic Heisenberg limit [4], our result
seems to be consistent with their result.
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